刁科凤
发布时间: 2016-01-07

 刁科凤,女,19656月生,中国运筹学会图论组合分会理事,教授,副院长,硕士生导师。主要研究方向:图论及其应用、组合最优化。联系方式:diaokefeng@lyu.edu.cn

 

◆学习经历

2001.07—2004.06,山东大学数学院,获运筹学与控制论专业博士学位;

1993.07—1996.07,曲阜师范大学运筹学研究所,获运筹学与控制论专业硕士学位.

 

◆主要论文

 

[23] Kefeng Diao, Vitaly Voloshin, Bing Xue,  Ping Zhao. On perfection and imperfection of one-realizations of a given set, submitted.

[22] Kefeng Diao, Fuliang Lu, Vitaly  Voloshin, Ping Zhao. The smallest uniform color-bounded  hypergraphs which are one-realizations of a given set, submitted.

[21] Kefeng Diao, Vitaly I. Voloshin, Kaishun Wang, Ping Zhao. The smallest one-realization of a given set IV.  Discrete Math., 338 (2015) :712--724. (SCI)

[20] Ruixue Zhang, Ping Zhao, Kefeng Diao*, Fuliang Lu. The chromatic spectrum of 3-uniform C-hypergraphs.  J.  Combin.  Optim., 29(4) (2015):796--802. (SCI)

[19] Ping Zhao, Kefeng Diao* and Fuliang Lu. More results on one-realizations of a given set. Graphs and Combin., DOI 10.1007/s00373-015-1603-9. (SCI)

[18] Xiaoxian Duan, Kefeng Diao*, Fuliang Lu and Xiao Zhu. The smallest realization of a given vector.  ARS COMBINATORIAL, 118(2015):381--389. (SCI)

[17] Kefeng Diao, Ping Zhao, Kaishun Wang. The smallest one-realization of a given set III. Graphs and Combin., 30(2014) : 875--885. (SCI)

[16] Ping Zhao, Kefeng Diao, Kaishun Wang. The smallest one-realization of a given set. Electronic  J. Combin., 19(2012), #P19. (SCI)  (cited in Handbook of Graph Theory(Second Edition))

[15] Ping Zhao, Kefeng Diao, Renying Chang, Kaishun Wang. The smallest one-realization of a given set II. Discrete Math., 312(2012):2946--2951. (SCI)

[14] 韩娜, 李惠娟, 刁科凤*. 一类基于完全图K_2m_上匹配的相交关系的池设计. 山东大学学报,47 (12)(2012): 53--56.

[13] Ping Zhao, Kefeng Diao, Kaishun Wang. The chromatic spectrum of 3-uniform bi-hypergraphs.  Discrete Math., 311(2011):2650--2356. (SCI) 

[12] Ping Zhao, Kefeng Diao, Kaishun Wang. A generalization of Macula’s disjunct matrices. J. Combin.  Optim.,  22(2011):495--498. (SCI)  

[11] Ping Zhao, Kefeng Diao, Upper Chromatic Number of Steiner Triple Systems, ARS COMBINATORIAL, 97(2010): 389--397. (SCI) 

[10] 刁科凤, 赵平. 具有最小连通点对图的C-超图的染色讨论. 山东大学学报, 42(2)(2007):56--58.

[9] Ping Zhao and Kefeng Diao. On the Upper Chromatic Number of Mixed Interval Hypertrees. CJCDGCGT 2005, LNCS 4381,(2007):272—277. (EIISTP)

[8] Kefeng Diao, Guizhen Liu, Dieter Rautenbach, Ping Zhao. A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2. Discrete Math., 306(2006):670--672. (SCI) (cited in Handbook of Graph Theory(Second Edition))

[7] 刁科凤, 赵平, 刘桂真. 3一致C-超图的最小边数. 数学物理学报,26A(6)(2006):948--952.

[6] 刁科凤, 刘桂真. 混合超图的染色理论. 数学进展,34(2)(2005):145—154.

[5] 刁科凤, 刘桂真. 4一致C-超图的最小边数的上界(英文). 应用数学,17(4)(2004):623—628.

[4] 刁科凤,禹继国. 完美C-超图的一个充分条件. 山东大学学报(理学版), 39(3)(2004):6--9.

[3] 刁科凤, 李继乾, 王志雄, 周惠山. 3-正则图的分割问题是NP-完备的. 系统科学与数学, 23(1)(2003):30--37.

[2]  刁科凤, 刘桂真, 赵平. 3一致反超图的完全不规则嵌入. 工程数学学报, 20(3)(2003):111—116.

[1] Kefeng Diao, Ping Zhao, Huishan Zhou. About the upper chromatic number of a co-hypergraph. Discrete Mathematics, 220(2000):67--63. (SCI) 

 

科研项目

 

2014.12—2017.12,超图染色的一类极值问题(ZR2014AM008),山东省自然科学基金英才基金项目,主持人

2010.01—2012.12,混合超图的染色理论(ZR2009AM013),山东省自然科学基金面向项目,主持人(已结题)